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News from the Lab

• Challenges 4 Still running for one week
– 31 Solves already
– Fastet solve: “Slicon Dead” with 2:52:46



Int. Secure Systems Lab
Technical University Vienna

3Internet Security 2

CTF Intro Meetup: Reversing

• Today we will have another Meetup
– 17:30 @ EI3A
– Intro to 

• Reverse Engineering, 
• disassembly  
• software side channel attacks

https://w0y.at/blog.html
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News from the Field

• Efail (https://efail.de/)

– Problem of Interaction between Mailclients and Encryption Software

“Our advice, which mirrors that of the researchers, is to immediately disable 
and/or uninstall tools that automatically decrypt PGP-encrypted email. Until 
the flaws described in the paper are more widely understood and fixed, 
users should arrange for the use of alternative end-to-end secure channels, 
such as Signal, and temporarily stop sending and especially reading PGP-
encrypted email.”

https://www.eff.org/deeplinks/2018/05/attention-pgp-users-new-vulnerabilities-require-you-tak
e-action-now

• Attack works by injecting HTML into email and thereby exfiltrating content

https://efail.de/
https://www.eff.org/deeplinks/2018/05/attention-pgp-users-new-vulnerabilities-require-you-take-action-now
https://www.eff.org/deeplinks/2018/05/attention-pgp-users-new-vulnerabilities-require-you-take-action-now
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News from the Field

• Next Day:

• Code injection Attack in Signal Desktop

– https://twitter.com/ortegaalfredo/status/995017143002509313

– Based on Electron (Based on [outdate] Chromium)

– Attack allows execution of javascript without interaction

https://twitter.com/ortegaalfredo/status/995017143002509313
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Overview

• Introduction

• Reverse engineering

– Intel x86 Assembler Primer
– static vs. dynamic analysis techniques
– anti-reverse engineering

• Malicious code analysis
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Introduction

• Reverse engineering

– process of analyzing a system

– understand its structure and functionality

– used in different domains (e.g., consumer electronics)

• Software reverse engineering

– understand architecture (from source code)

– extract source code (from binary representation)

– change code functionality (of proprietary program)

– understand message exchange (of proprietary protocol)
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Reverse Engineering

• Application areas
– copy (steal) technology 

– allow for interoperability
• Samba (SMB protocol), WINE (Windows API), OpenOffice (MS Office), 

NTFS (file system structure), ...

– circumvent copy protection or access restrictions
• program cracking, creation of license key-generators (keygens)

• Techniques
– static approaches

– dynamic approaches
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Reverse Engineering

• Static techniques
– read documentation

– read source code

– analyze binary for strings, symbols, and library functions

– disassemble binary image

• Dynamic techniques
– observe interaction with environment

• file system, network, registry 

– observe interaction with operating system
• system calls

– debug process
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Reverse Engineering

Static Techniques
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Static Techniques

• Gathering program information

$ cat test.c

#include <stdio.h>

int main (int argc, char **argv)
{
  if (argc == 2 && strcmp(argv[1], "correctSerial") == 0)
  {
    printf("do something useful\n");
  }
  else
  {
    printf("usage: %s <correct-serial>\n", argv[0]);
  }
  return 0;
}
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Static Techniques

• Gathering program information

– strings that the binary contains
• strings command

$ strings test

/lib64/ld-linux-x86-64.so.2
libm.so.6
__gmon_start__
_Jv_RegisterClasses
libc.so.6
puts
printf
strcmp
libc_start_main

GLIBC_2.2.5
fff.
fffff.
l$ L
t$(L
|$0H
correctSerial
do something useful
usage: %s <correct-serial>
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Static Techniques

• Gathering program information

– library functions that were used
• easy when program is dynamically linked
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Shared Libraries

• Process layout (32 bit systems)

0x00000000 – 0xbfffffff: user memory

0xc0000000 – 0xffffffff: kernel memory

.code

libc.so

heap

stack

.code .GOT table
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Shared Libraries

• Process layout (32 bit systems)

0x00000000 – 0xbfffffff: user memory

0xc0000000 – 0xffffffff: kernel memory

.code

libc.so

heap

stack

.code

.code

0804832c <printf@plt>:
 804832c: jmp  *0x804a008
 8048332: ...

080483f4 <main>:
 80483f4: ...
 8048414:call  804832c <printf@plt>

.GOT table
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Shared Libraries

• Process layout (32 bit systems)

0x00000000 – 0xbfffffff: user memory

0xc0000000 – 0xffffffff: kernel memory

.code

libc.so

heap

stack

.code

.code

0804832c <printf@plt>:
 804832c: jmp  *0x804a008
 8048332: ...

080483f4 <main>:
 80483f4: ...
 8048414:call  804832c <printf@plt>

.GOT table
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Shared Libraries

• Process layout (32 bit systems)

0x00000000 – 0xbfffffff: user memory

0xc0000000 – 0xffffffff: kernel memory

.code

libc.so

heap

stack

.code

.code

0804832c <printf@plt>:
 804832c: jmp  *0x804a008
 8048332: ...

080483f4 <main>:
 80483f4: ...
 8048414:call  804832c <printf@plt>

.GOT table (filled when loading lib)

0x804a000 <_GLOBAL_OFFSET_TABLE_+12>:
   0x08048312
0x804a004 <_GLOBAL_OFFSET_TABLE_+16>:
   0xf7d67690
0x804a008 <_GLOBAL_OFFSET_TABLE_+20>:
   0x08048332

libc.so

08048332 <printf>:
 8048332: ...
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Static Techniques

• Gathering program information

– library functions that were used
• easy when program is dynamically linked

• use ldd to find imported libraries

$ ldd test
        linux-vdso.so.1 =>  (0x00007fff701ff000)
        libm.so.6 => /lib/libm.so.6 (0x00007f3f2dd94000)
        libc.so.6 => /lib/libc.so.6 (0x00007f3f2da25000)
        /lib64/ld-linux-x86-64.so.2 (0x00007f3f2e018000)
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Static Techniques

• Gathering program information

– library functions that were used
• easy when program is dynamically linked
• use objdump to find linked functions

• more difficult when program is statically linked
• use function fingerprints

– support through tools: IDA or dress

$ objdump -R test 
...
DYNAMIC RELOCATION RECORDS
OFFSET           TYPE              VALUE 
0000000000601000 R_X86_64_JUMP_SLOT  printf
0000000000601008 R_X86_64_JUMP_SLOT  puts
0000000000601018 R_X86_64_JUMP_SLOT  strcmp
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Static Techniques

• Gathering program information

– program symbols
• used for debugging (and linking)
• function names (with start addresses)
• global variables

• can be removed with strip
• use nm to display symbol information

– function call trees
• draw a graph that shows which function calls which other function
• get an idea of program structure
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Static Techniques

• Gathering program information

– function call trees
• Conficker.A domain name generation algorithm (DGA)
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Static Techniques

• Disassembly
– process of translating binary stream into machine instructions

• Different levels of difficulty
– depending on ISA (instruction set architecture)

• Instructions can have
– fixed length

• more efficient to decode for processor

• RISC processors (SPARC, MIPS)

– variable length
• use less space for common instructions

• CISC processors (Intel x86)
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Static Techniques

• Fixed length instructions
– easy to disassemble

– each address is a multiple of the instruction length

– even if code contains data (or junk), all program instructions are found

• Variable length instructions
– difficult to disassemble

– start addresses of instructions not known in advance

– disassembler can be desynchronized with respect to actual code
• force disassembler to output incorrect instructions

• obfuscation attack

– different strategies
• linear sweep disassembler (i.e. obdjump)

• recursive traversal disassembler (i.e. IDA Pro)
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Intel x86 Assembler Primer

• Assembler Language
– human-readable form of machine instructions

– must understand the hardware architecture, memory model, and stack

• What does this Instruction do?

MOV Reg1, Reg2
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Intel x86 Assembler Primer

• Assembler Language
– human-readable form of machine instructions

– must understand the hardware architecture, memory model, and stack

• What does this Instruction do?

MOV Reg1, Reg2

• It depends: AT&T syntax vs. Intel syntax
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AT&T vs. Intel Syntax

AT&T Intel

mnemonic source(s), destination

MOV src, dest

Constants: prefixed with $

Hexadecimal numbers:  start with 0x

Registers:  prefixed with %

Memory access is of form
displacement(%base, %index, scale)
where the result address is
displacement + %base + %index*scale

mnemonic destination, source(s)

MOV dest, src

No prefix

hexadecimal numbers:  start with 0x

Registers:  No prefix

Memory access is of form
<size> [disp + index*4 + base]
where the result address is
disp + index*4 + base
Example:
dword [ebx + ecx*4 + mem_location]
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AT&T vs. Intel: Example

$ objdump -M att -d /bin/ls $ objdump -M intel -d /bin/ls

...
push %ebp
xor %ecx,%ecx
mov %esp,%ebp
sub $0x8,%esp
mov %ebx,(%esp)
mov 0x8(%ebp),%ebx
mov %esi,0x4(%esp)
mov 0xc(%ebp),%esi
mov (%ebx),%edx
mov 0x4(%ebx),%eax
xor 0x4(%esi),%eax
xor (%esi),%edx
or %edx,%eax
je 8049c60 <exit@plt+0x13c>
...

...
push ebp
xor ecx,ecx
mov ebp,esp
sub esp,0x8
mov DWORD PTR [esp],ebx
mov ebx,DWORD PTR [ebp+0x8]
mov DWORD PTR [esp+0x4],esi
mov esi,DWORD PTR [ebp+0xc]
mov edx,DWORD PTR [ebx]
mov eax,DWORD PTR [ebx+0x4]
xor eax,DWORD PTR [esi+0x4]
xor edx,DWORD PTR [esi]
or eax,edx
je 8049c60 <exit@plt+0x13c>
...
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Intel x86 Assembler Primer

• Identifying Syntax
– Intel: MOV dest, src

– AT&T: MOV src, dest

– Find out yourself:

• Look out for read-only elements, constants → match them as source

• IDA Pro, Windows usually use Intel Syntax

• objdump, Unix Systems prefer AT&T syntax
– Usually you will find a switch/argument to change the syntax)

mailto:exit@plt
mailto:exit@plt
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Registers

• Local variables of processor
– Efficient access

• No delays compared to loading from RAM/Memory

– Are accessed by name in assembly instructions

– Different categories
• General-purpose register (GPR)

• Special-purpose regsiters (SPR)

• Vector registers

• Data registers

• Instruction Pointer
– The EIP register contains the address of the next instruction to be 

executed if no branching is done
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General-purpose registers

• Eight 32-bit general purpose registers (GPR)
• can be used for calculations, temporary storage of values, …
• %eax, %ebx, %ecx, %edx, %esi, %edi, %esp, %ebp

– %esp - stack pointer
– %ebp - frame/base pointer

• Registers Extensions
– “E” prefix for 32bit variants → EAX, EIP
– “R” prefix for 64 bit variants → RAX, RIP

• Additional GPRs for 64 bit: R8 → R15
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Status register (EFLAGS register)

• The EFLAGS is a 32-bit register used as a collection 
of bits representing Boolean values to store the 
results of operations and the state of the processor
– CF: Carry Flag Set if the last arithmetic operation carried 

(addition) or borrowed (subtraction) a bit beyond the size of 
the register

– PF: Parity Flag Set if the number of set bits in the least 
significant byte is a multiple of 2

– ZF: Zero Flag Set if the result of an operation is Zero
– SF: Sign Flag Set if the result of an operation is negative
–  … and many more
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Intel x86 Assembler Primer

• Stack
– managed by stack pointer (%esp) and frame pointer (%ebp)

– used for 
• function arguments

• function return address

• local arguments
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Intel x86 Assembler Primer

• Endianness/ Byte ordering
– important for multi-byte values (e.g., four byte long value)

– Intel Architecture uses little endian ordering

– how to represent 0x11223344 in memory (at addr)?

0x010004 (addr) :   0x44
0x010005 (addr+1) :   0x33
0x010006 (addr+2) :   0x22
0x010007 (addr+3) :   0x11
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Intel x86 Assembler Primer

• Important mnemonics (instructions)
  mov     data transfer
  push/pop     top of stack manipulation
  add/sub     arithmetic
  cmp/test     compare two values and set control flags
  je/jne     conditional jump depending on control flags (branch)
  jmp     unconditional jump

• Numerical representation
– Binary (0,1): 10011100

• Prefix: 0b10011100 ← Unix (both Intel and AT&T)

• Suffix: 10011100b ← Traditional Intel syntax

– Hexadecimal ( 0...F): “0x” vs “h”

• Prefix: 0xABCD1234 ← Easy to notice

• Suffix: ABCD1234h ← Number or literal? (Usually Syntax highlighting will help 
out)
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Intel x86 Assembler Primer

• Addressing modes
– Direct: MOV EAX, [10h]

• Copy value located at address 10h

– Indirect: MOV EAX, [EBX]
• Copy value pointed to by register BX

– Indexed: MOV AL, [EBX + ECX * 4 + 10h]
• Copy value from array (BX[4 * CX + 0x10])

– Pointers can be associated to type
• MOV AL, byte ptr [BX]

• For 64bit you can also read/use RIP for addressing
– Useful for Position-independent code (and shellcode)
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Intel x86 Assembler Primer

• if statement

#include <stdio.h>

int main(int argc, char **argv)

{

  int a;

 

  if(a < 0) {

    printf("A < 0\n");

  }

  else {

    printf("A >= 0\n");

  }

}

.LC0:

        .string "A < 0\n"

.LC1:

        .string "A >= 0\n"

.globl main

        .type   main, @function

main:

    [ function prologue ]

        cmp    $0, -4(%ebp) /* s = a - 0*/

        jns     .L2          /* if sign bit is not

         set */

        mov    $.LC0, (%esp)

        call    printf

        jmp     .L3

.L2:

        mov    $.LC1, (%esp)

        call    printf

.L3:

        leave

        ret
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Intel x86 Assembler Primer

• while statement

#include <stdio.h>

int main(int argc, char **argv)

{

    int i; 

    i = 0;

    while(i < 10)

    {

        printf("%d\n", i);

        i++;

    }

}

.LC0:

    .string "%d\n"

main:

    [ function prologue ]

    mov    $0, -4(%ebp)

.L2:

        cmp    $9, -4(%ebp)

        jle     .L4    /* Jump if less or equal */

        jmp     .L3

.L4:

        mov    -4(%ebp), %eax

        mov    %eax, 4(%esp)

        mov    $.LC0, (%esp)

        call    printf

        lea    -4(%ebp), %eax   /* Load Address */

        inc    (%eax)

        jmp     .L2

.L3:

        leave

        ret 
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Intel x86 Assembler Primer

• Calling Conventions
– Standard for passing arguments to function calls
– Caller and Callee need to agree
– Enforced by compiler
– Important for 3rd party library usage
– Different styles ↔ different Pros/cons
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Intel x86 Assembler Primer

• System V AMD64 ABI
– Used on *NIX systems
– Arguments (Integer/Pointer) passed in

• RDI, RSI, RDX, RCX, R8, R9

– System calls use R10 instead of RCX
– Floating Point arguments passed in XMM registers
– All Additional Arguments are passed on stack
– Microsoft x64 calling convention similar

• Uses: RCX, RDX, R8, R9
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Disassembly
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Disassembly
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CORRECT

Disassembly

• Linear sweep disassembler
– start at beginning of code (.text) section

– disassemble one instruction after the other

– assume that well-behaved compiler tightly packs instructions
– objdump -d uses this approach

• Obfuscation Attack
– insert data (or junk) between instructions and let control flow jump over this garbage

– disassembler gets confused

jmp L1
.short 0x4711
L1:
xor %eax, %eax
...

ret

4004cf:  eb 02                 jmp    4004d3
4004d1:  11 47                 <junk>

4004d3:  31 c0                 xor    %eax,%eax
4004d5:  b8 00 00 00 00        mov    $0x0,%eax
4004da:  c9                    leave
4004db:  c3                    ret
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Disassembly

jmp L1
.short 0x4711
L1:
xor %eax, %eax
...

ret

4004cf:  eb 02                 jmp    4004d3
4004d1:  11 47 31              adc    %eax,0x31(%edi)

4004d4:  c0 b8 00 00 00 00 c9  sarb   $0xc9,0x0(%eax) 

4004db:  c3                    ret

• Linear sweep disassembler
– start at beginning of code (.text) section

– disassemble one instruction after the other

– assume that well-behaved compiler tightly packs instructions
– objdump -d uses this approach

• Obfuscation Attack
– insert data (or junk) between instructions and let control flow jump over this garbage

– disassembler gets confused
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Disassembly

• Recursive traversal disassembler
– aware of control flow

– start at program entry point (e.g., determined by ELF header)

– disassemble one instruction after the other, until branch or jump is found 

– recursively follow both (or single) branch (or jump) targets

– not all code regions can be reached
• indirect calls and indirect jumps

• use a register to calculate target during run-time

– for these regions, linear sweep is used

– IDA Pro uses this approach
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Disassembly

• Recursive traversal disassembler

• Obfuscation Attack

– plain previous attack fails

– replace direct jumps (calls) by indirect ones

– force disassembler to revert to linear sweep, and then use previous attack

4004b7:  e8 00 00 00 00          call  4004bc
4004bc:  58                      pop    %eax
4004bd:  83 c0 06                add    $0x6,%eax
4004c0:  ff e0                   jmp   *%eax

4004c2:  31 c0                   xor    %eax,%eax
      :  ...
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Disassembly

• Recursive traversal disassembler

• Obfuscation Attack

– plain previous attack fails

– replace direct jumps (calls) by indirect ones

– force disassembler to revert to linear sweep, and then use previous attack

4004b7:  e8 00 00 00 00          call  4004bc
4004bc:  58                      pop    %eax
4004bd:  83 c0 06                add    $0x6,%eax
4004c0:  ff e0                   jmp   *%eax

4004c2:  31 c0                   xor    %eax,%eax
      :  ...

get eip

jmp to 4004c2
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Control Flow Graph

• Nodes are called basic blocks

• Edges represent possible flow of 

control from end of block to beginning 

of another block

• Control always enters at the beginning 

of a block and exits at the end
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Bytecode Decompilation

• Bytecode Decompilation

– Recreate program for interpreted languages

• Usually includes more information

– Instructions are easier to reverse

– Additional information in archives

• Examples for decompilers (just a small sample selection to get you 
started)

– Python .pyc → uncompyle2

– Java → Procyon/Luyten

– .NET → ILSpy



Int. Secure Systems Lab
Technical University Vienna

50Internet Security 2

Binary Decompilation

• Binary Decompilation

– Recreate high level representation of binary code

– Usually C or C-like

• Faces several Problems

– Optimizing compilers destroy structure
• e.g. in-lining, loop unrolling,...

– Type information is lost

– Reconstruction of control flow...

• Still verry usefull, even if it provides incomplete results
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Binary Decompilation
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Reverse Engineering

Dynamic Techniques
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Dynamic Techniques

• General information about process
– /proc file system

– /proc/<pid>/ for a process with pid <pid>

– interesting entries
• cmdline (show command line)
• environ (show environment)
• maps (show memory map, remember this for the challenges!!)

• fd (file descriptors held by program)

• exe (program image)

• Interaction with the environment
– file system
– network
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Dynamic Techniques

• File system interaction
– lsof

– lists all open files associated with processes

• Registry (Windows)
– regmon (Sysinternals)

• Network interaction
– check for open ports

• processes that listen for requests or that have active connections
• ss (netstat [deprecated])

• also shows UNIX domain sockets used for IPC

– check for actual network traffic
• tcpdump
• wireshark



Int. Secure Systems Lab
Technical University Vienna

55Internet Security 2

Dynamic Techniques

• System calls
– are at the boundary gates between user space and kernel

– reveal much about a process’ operation
– strace

– powerful tool that can also 
• follow child processes

• decode more complex system call arguments

• show signals

– works via the ptrace interface

• Library functions
– similar to system calls, but dynamically linked libraries
– ltrace
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Dynamic Techniques

• strace

$ strace echo "hi"

execve("/bin/echo", ["echo", "hi"], [/* 41 vars */])    = 0
brk(0)                                                  = 0xddb000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVA...)    = 0x7f54eac10000
...
access("/etc/ld.so.nohwcap", F_OK)      = -1 ENOENT (No such file or...) 
open("/lib/libc.so.6", O_RDONLY)                        = 3
read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\"..., 832) = 832
fstat(3, {st_mode=S_IFREG|0755, st_size=1490312, ...})  = 0
mmap(NULL, 3598344, PROT_READ|PROT_EXEC, ...)           = 0x7f54ea684000
mprotect(0x7f54ea7ea000, 2093056, PROT_NONE)            = 0
...
write(1, "hi\n", 3hi)                                   = 3
close(1)                                                = 0
munmap(0x7f54eaac1000, 4096)                            = 0
close(2)                                                = 0
exit_group(0)                                           = ?
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Dynamic Techniques

• ltrace

$ ltrace echo "hi"

__libc_start_main(0x4013e0, 2, 0x7fffb3cfbe78, ...)           
getenv("POSIXLY_CORRECT")                             = NULL
strrchr("echo", '/')                                  = NULL
setlocale(6, "")                                      = "en_US.UTF-8"
bindtextdomain("coreutils", "/usr/share/locale")      = "/usr/share/locale"
textdomain("coreutils")                               = "coreutils"
...
fputs_unlocked(0x7fffb3cfc61e, 0x7f19cdc6a780, 0, 1, 0)      = 1
...
fclose(0x7f19cdc6a860)                                = 0
...
+++ exited (status 0) +++



Int. Secure Systems Lab
Technical University Vienna

58Internet Security 2

Dynamic Techniques

• Execute program in a controlled environment
– sandbox (virtual machine or emulator)

– debugger

• Advantages
– can inspect actual program behavior and data values

– target of indirect jumps (or calls) can be observed

• Disadvantages
– may accidentally launch attacks

– anti-debugging mechanisms

– not all possible traces (paths) can be seen
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Dynamic Techniques

• Debugger
– breakpoints to pause execution

• when execution reaches a certain point (address)
• when specified memory is access or modified

– examine memory and CPU registers
– modify memory and execution path

• Advanced features
– attach comments to code
– data structure and template naming
– track high level logic

• file descriptor tracking

– function fingerprinting
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Dynamic Techniques

• Debugger on x86 / Linux
– use the ptrace interface

• ptrace
– allows a process (parent) to monitor another process (child)
– whenever the child process receives a signal, the parent is notified
– parent can then

• access and modify memory image (peek and poke commands)
• access and modify registers
• deliver signals

– ptrace can also be used for system call monitoring
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Dynamic Techniques

• Breakpoints
– hardware breakpoints
– software breakpoints

• Hardware breakpoints
– special debug registers (e.g., Intel x86)
– debug registers compared with PC at every instruction

• Software breakpoints
– debugger inserts (overwrites) target address with an int 0x03 instruction
– interrupt causes signal SIGTRAP to be sent to process
– debugger

• gets control and restores original instruction 
• single steps to next instruction
• re-inserts breakpoint
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Dynamic Techniques

• Anti-debugging techniques

– detect tracing
• a process can be traced only once

if (ptrace(PTRACE_TRACEME, 0, 1, 0) < 0)

       exit(1);

– detect breakpoints
• look for int 0x03 instructions

if ((*(unsigned *)((unsigned)<addr>+3) & 0xff)==0xcc)

      exit(1);
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Dynamic Techniques

• Anti-debugging techniques (cont.)

– checksum the code
if (checksum(text_segment) != valid_checksum)

    exit(1);

– register signal handler for debug interrupt

• force interrupt: parent will receive the signal

int dbg=1;

void my_handler(int signal) { dbg=0; };

int main(...) {

  signal(SIG_TRAP, my_handler);

  asm(“int 0x03”);

  if (dbg)

      exit(1);
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Dynamic Techniques

• Reverse Debugging
– Sometimes also called “Historical debugging” or “IntelliTrace” 

(Microsoft)

• Step through your program backwards in “time”
– Usefull to identify the source of arguments/errors
– You can use watchpoint/breakpoints as usual

• Gdb supports this since 7.0
– Has to be activated explicitly in gdb
– Imposes high runtime and memory overhead

• Everything needs to be recorded 
– Registers, Old memory values,...
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Malicious Code Analysis
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Malicious Code Analysis

Static analysis vs. dynamic analysis

• Static analysis
– code is not executed
– all possible branches can be examined (in theory)
– quite fast

•    Problems of static analysis
– binary code typically contains very little information

• functions, variables, type information, …

– disassembly difficult (particularly for Intel x86 architecture)
– obfuscated code
– packed code, self-modifying code
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Malicious Code Analysis

• Packed code (dynamic unpacking)

0x00000000 – 0xbfffffff: user memory

0xc0000000 – 0xffffffff: kernel memory

heap

stack

.code

.bss 7a3e8018efa8aca8288
27281a82ef9a01ab181
1020a9a3bc9e99ff121 .code

08048300 <decrypt>:
 8048300: ...

080483f4 <main>:
 80483f4: h=malloc(...)
 80483f5: for (i=...)
 80483f6:   x = packed_code[i];
 80483f7:   h[i] = decrypt(x);
 80483f7: jmp *h
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Malicious Code Analysis

• Packed code (dynamic unpacking)

0x00000000 – 0xbfffffff: user memory

0xc0000000 – 0xffffffff: kernel memory

heap

stack

.code

.bss 7a3e8018efa8aca8288
27281a82ef9a01ab181
1020a9a3bc9e99ff121 .code

08048300 <decrypt>:
 8048300: ...

080483f4 <main>:
 80483f4: h=malloc(...)
 80483f5: for (i=...)
 80483f6:   x = packed_code[i];
 80483f7:   h[i] = decrypt(x);
 80483f7: jmp *h
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Malicious Code Analysis

• Packed code (dynamic unpacking)

0x00000000 – 0xbfffffff: user memory

0xc0000000 – 0xffffffff: kernel memory

heap

stack

.code

.bss 7a3e8018efa8aca8288
27281a82ef9a01ab181
1020a9a3bc9e99ff121 .code

08048300 <decrypt>:
 8048300: ...

080483f4 <main>:
 80483f4: h=malloc(...)
 80483f5: for (i=...)
 80483f6:   x = packed_code[i];
 80483f7:   h[i] = decrypt(x);
 80483f7: jmp *h

push %ebp
sub  $0x14, %esp
xor  %eax, %eax
...
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Malicious Code Analysis

• Packed code (dynamic unpacking)

0x00000000 – 0xbfffffff: user memory

0xc0000000 – 0xffffffff: kernel memory

heap

stack

.code

.bss 7a3e8018efa8aca8288
27281a82ef9a01ab181
1020a9a3bc9e99ff121 .code

08048300 <decrypt>:
 8048300: ...

080483f4 <main>:
 80483f4: h=malloc(...)
 80483f5: for (i=...)
 80483f6:   x = packed_code[i];
 80483f7:   h[i] = decrypt(x);
 80483f7: jmp *h

push %ebp
sub  $0x14, %esp
xor  %eax, %eax
...
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Malicious Code Analysis

• Dynamic analysis
– code is executed

– sees instructions that are actually executed 

• Problems of dynamic analysis
– single path (execution trace) is examined

– analysis environment possibly not invisible

– analysis environment possibly not comprehensive

• Possible analysis environments
– instrument program

– instrument operating system

– instrument hardware
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Malicious Code Analysis

• Instrument program
– analysis operates in same address space as sample
– manual analysis with debugger

– Detours (Windows API hooking mechanism)

– binary under analysis is modified
• breakpoints are inserted
• functions are rewritten
• debug registers are used

– not invisible, malware can detect analysis
– can cause significant manual effort
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Malicious Code Analysis

• Instrument operating system
– analysis operates in OS where sample is run
– Windows system call hooks

– invisible to (user-mode) malware
– can cause problems when malware runs in OS kernel
– limited visibility of activity inside program

• cannot set function breakpoints
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Malicious Code Analysis

• Instrument hardware
– provide virtual hardware (processor) where sample can        

execute (sometimes including OS)
– software emulation of executed instructions

– analysis observes activity “from the outside”

– completely transparent to sample (and guest OS)
– operating system environment needs to be provided
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Analysis Report

• File activity
– read, write, create, open, …

• Registry activity

• Service activity
– start or stop of Windows services (via Service Manager)

• Process activity
– start, terminate process, inter-process communication

• Network activity
– API calls and packet (network) logs
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Stealth

• Virtual machines
– allow to quickly restore analysis environment

– identical, clean environment for every analysis run

– introduces detectable artifacts

• Some detection mechanisms (we have seen)
– x86 virtualization problems

– speed of execution

– check system/installation specific settings

– computer name, drive label, external IP address, etc.
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Stealth

$ ./analyze.py --show-window ~/anti_anubis.exe 
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Overcomming 
Anti-*
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Anti Disassembly

• Running the binary should still work

• Try different disassembly methods / tools

• Help the disassembler to analyse the code
– NOP out junk data

• 0x90 → NOP
– Remove some instructions (beware to not break intended 

functionality)
– Connect pieces with unconditional jumps

• If you can identify jump targets for indirect jumps
• EB xx → JMP +xx
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Patching

• Use a hex editor (hexedit)

• GDB

– gdb (start gdb without a command to debug)

(gdb) set write on
(gdb) exec-file <progname>

• File needs to be selected after write is set to on

(gdb) set *0x4025a6=0xcc
• radare2

– oo+ (re-open file in write mode)

w 0x90 (write 0x90 at current possition)
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Anti Debugging

• Reduce visibility of the debugger

• Use the appropriate breakpoint technique

• Intercept certain API functions to return fake results

– Or patch jumps inside the binary

– e.g JE (0x74) → JNE (0x75)

• Single step through problematic part manually and disable anti-
debugging checks
– Or script the process

– Some tools also have functionality to work around certain checks
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LD_PRELOAD

• Arguments for Dynamic Linker

– Preloads given library before all other libraries

– Can replace API calls

e.g ptrace

• Can also be usefull to introduce determinism
– e.g. replace calls to random or gettime with deterministic 

values to get the same results while debugging/analysing a 
binary
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Anti-VM

• Try to change the execution environment

– Run on a different VM

– Tweak environment to avoid detection

– Run on bare metal (beware!)

• Check what the binary reads/compares/executes to find anti-vm 
tricks

• Change control flow with a debugger

• Patch the binary to remove/avoid the checks
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Summary

• Software reverse engineering
– static & dynamic techniques

• Static techniques
– check for strings, symbols, and library functions
– disassembler

• Dynamic techniques
– system/API call monitoring (ptrace/ltrace interface)
– monitor network and file system activity
– debugger

• Malicious code analysis
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