
Int. Secure Systems Lab
Technical University Vienna

1Internet Security 2

Internet Security

Reverse Engineering and
Binary Analysis

Adrian Dabrowski, Georg Merzdovnik, Aljosha Judmayer,

Johanna Ullrich, Christian Kudera

Int. Secure Systems Lab
Technical University Vienna

2Internet Security 2

News from the Lab

• Challenges 4 Still running for one week
– 31 Solves already
– Fastet solve: “Slicon Dead” with 2:52:46

Int. Secure Systems Lab
Technical University Vienna

3Internet Security 2

CTF Intro Meetup: Reversing

• Today we will have another Meetup
– 17:30 @ EI3A
– Intro to

• Reverse Engineering,
• disassembly
• software side channel attacks

https://w0y.at/blog.html

Int. Secure Systems Lab
Technical University Vienna

4Internet Security 2

News from the Field

• Efail (https://efail.de/)

– Problem of Interaction between Mailclients and Encryption Software

“Our advice, which mirrors that of the researchers, is to immediately disable
and/or uninstall tools that automatically decrypt PGP-encrypted email. Until
the flaws described in the paper are more widely understood and fixed,
users should arrange for the use of alternative end-to-end secure channels,
such as Signal, and temporarily stop sending and especially reading PGP-
encrypted email.”

https://www.eff.org/deeplinks/2018/05/attention-pgp-users-new-vulnerabilities-require-you-tak
e-action-now

• Attack works by injecting HTML into email and thereby exfiltrating content

https://efail.de/
https://www.eff.org/deeplinks/2018/05/attention-pgp-users-new-vulnerabilities-require-you-take-action-now
https://www.eff.org/deeplinks/2018/05/attention-pgp-users-new-vulnerabilities-require-you-take-action-now

Int. Secure Systems Lab
Technical University Vienna

5Internet Security 2

News from the Field

• Next Day:

• Code injection Attack in Signal Desktop

– https://twitter.com/ortegaalfredo/status/995017143002509313

– Based on Electron (Based on [outdate] Chromium)

– Attack allows execution of javascript without interaction

https://twitter.com/ortegaalfredo/status/995017143002509313

Int. Secure Systems Lab
Technical University Vienna

6Internet Security 2

Overview

• Introduction

• Reverse engineering

– Intel x86 Assembler Primer
– static vs. dynamic analysis techniques
– anti-reverse engineering

• Malicious code analysis

Int. Secure Systems Lab
Technical University Vienna

7Internet Security 2

Introduction

• Reverse engineering

– process of analyzing a system

– understand its structure and functionality

– used in different domains (e.g., consumer electronics)

• Software reverse engineering

– understand architecture (from source code)

– extract source code (from binary representation)

– change code functionality (of proprietary program)

– understand message exchange (of proprietary protocol)

Int. Secure Systems Lab
Technical University Vienna

8Internet Security 2

Reverse Engineering

• Application areas
– copy (steal) technology

– allow for interoperability
• Samba (SMB protocol), WINE (Windows API), OpenOffice (MS Office),

NTFS (file system structure), ...

– circumvent copy protection or access restrictions
• program cracking, creation of license key-generators (keygens)

• Techniques
– static approaches

– dynamic approaches

Int. Secure Systems Lab
Technical University Vienna

9Internet Security 2

Reverse Engineering

• Static techniques
– read documentation

– read source code

– analyze binary for strings, symbols, and library functions

– disassemble binary image

• Dynamic techniques
– observe interaction with environment

• file system, network, registry

– observe interaction with operating system
• system calls

– debug process

Int. Secure Systems Lab
Technical University Vienna

10Internet Security 2

Reverse Engineering

Static Techniques

Int. Secure Systems Lab
Technical University Vienna

12Internet Security 2

Static Techniques

• Gathering program information

$ cat test.c

#include <stdio.h>

int main (int argc, char **argv)
{
 if (argc == 2 && strcmp(argv[1], "correctSerial") == 0)
 {
 printf("do something useful\n");
 }
 else
 {
 printf("usage: %s <correct-serial>\n", argv[0]);
 }
 return 0;
}

Int. Secure Systems Lab
Technical University Vienna

13Internet Security 2

Static Techniques

• Gathering program information

– strings that the binary contains
• strings command

$ strings test

/lib64/ld-linux-x86-64.so.2
libm.so.6
__gmon_start__
_Jv_RegisterClasses
libc.so.6
puts
printf
strcmp
libc_start_main

GLIBC_2.2.5
fff.
fffff.
l$ L
t$(L
|$0H
correctSerial
do something useful
usage: %s <correct-serial>

Int. Secure Systems Lab
Technical University Vienna

14Internet Security 2

Static Techniques

• Gathering program information

– library functions that were used
• easy when program is dynamically linked

Int. Secure Systems Lab
Technical University Vienna

15Internet Security 2

Shared Libraries

• Process layout (32 bit systems)

0x00000000 – 0xbfffffff: user memory

0xc0000000 – 0xffffffff: kernel memory

.code

libc.so

heap

stack

.code .GOT table

Int. Secure Systems Lab
Technical University Vienna

16Internet Security 2

Shared Libraries

• Process layout (32 bit systems)

0x00000000 – 0xbfffffff: user memory

0xc0000000 – 0xffffffff: kernel memory

.code

libc.so

heap

stack

.code

.code

0804832c <printf@plt>:
 804832c: jmp *0x804a008
 8048332: ...

080483f4 <main>:
 80483f4: ...
 8048414:call 804832c <printf@plt>

.GOT table

Int. Secure Systems Lab
Technical University Vienna

17Internet Security 2

Shared Libraries

• Process layout (32 bit systems)

0x00000000 – 0xbfffffff: user memory

0xc0000000 – 0xffffffff: kernel memory

.code

libc.so

heap

stack

.code

.code

0804832c <printf@plt>:
 804832c: jmp *0x804a008
 8048332: ...

080483f4 <main>:
 80483f4: ...
 8048414:call 804832c <printf@plt>

.GOT table

Int. Secure Systems Lab
Technical University Vienna

18Internet Security 2

Shared Libraries

• Process layout (32 bit systems)

0x00000000 – 0xbfffffff: user memory

0xc0000000 – 0xffffffff: kernel memory

.code

libc.so

heap

stack

.code

.code

0804832c <printf@plt>:
 804832c: jmp *0x804a008
 8048332: ...

080483f4 <main>:
 80483f4: ...
 8048414:call 804832c <printf@plt>

.GOT table (filled when loading lib)

0x804a000 <_GLOBAL_OFFSET_TABLE_+12>:
 0x08048312
0x804a004 <_GLOBAL_OFFSET_TABLE_+16>:
 0xf7d67690
0x804a008 <_GLOBAL_OFFSET_TABLE_+20>:
 0x08048332

libc.so

08048332 <printf>:
 8048332: ...

Int. Secure Systems Lab
Technical University Vienna

19Internet Security 2

Static Techniques

• Gathering program information

– library functions that were used
• easy when program is dynamically linked

• use ldd to find imported libraries

$ ldd test
 linux-vdso.so.1 => (0x00007fff701ff000)
 libm.so.6 => /lib/libm.so.6 (0x00007f3f2dd94000)
 libc.so.6 => /lib/libc.so.6 (0x00007f3f2da25000)
 /lib64/ld-linux-x86-64.so.2 (0x00007f3f2e018000)

Int. Secure Systems Lab
Technical University Vienna

20Internet Security 2

Static Techniques

• Gathering program information

– library functions that were used
• easy when program is dynamically linked
• use objdump to find linked functions

• more difficult when program is statically linked
• use function fingerprints

– support through tools: IDA or dress

$ objdump -R test
...
DYNAMIC RELOCATION RECORDS
OFFSET TYPE VALUE
0000000000601000 R_X86_64_JUMP_SLOT printf
0000000000601008 R_X86_64_JUMP_SLOT puts
0000000000601018 R_X86_64_JUMP_SLOT strcmp

Int. Secure Systems Lab
Technical University Vienna

21Internet Security 2

Static Techniques

• Gathering program information

– program symbols
• used for debugging (and linking)
• function names (with start addresses)
• global variables

• can be removed with strip
• use nm to display symbol information

– function call trees
• draw a graph that shows which function calls which other function
• get an idea of program structure

Int. Secure Systems Lab
Technical University Vienna

22Internet Security 2

Static Techniques

• Gathering program information

– function call trees
• Conficker.A domain name generation algorithm (DGA)

Int. Secure Systems Lab
Technical University Vienna

23Internet Security 2

Static Techniques

• Disassembly
– process of translating binary stream into machine instructions

• Different levels of difficulty
– depending on ISA (instruction set architecture)

• Instructions can have
– fixed length

• more efficient to decode for processor

• RISC processors (SPARC, MIPS)

– variable length
• use less space for common instructions

• CISC processors (Intel x86)

Int. Secure Systems Lab
Technical University Vienna

24Internet Security 2

Static Techniques

• Fixed length instructions
– easy to disassemble

– each address is a multiple of the instruction length

– even if code contains data (or junk), all program instructions are found

• Variable length instructions
– difficult to disassemble

– start addresses of instructions not known in advance

– disassembler can be desynchronized with respect to actual code
• force disassembler to output incorrect instructions

• obfuscation attack

– different strategies
• linear sweep disassembler (i.e. obdjump)

• recursive traversal disassembler (i.e. IDA Pro)

Int. Secure Systems Lab
Technical University Vienna

25Internet Security 2

Intel x86 Assembler Primer

• Assembler Language
– human-readable form of machine instructions

– must understand the hardware architecture, memory model, and stack

• What does this Instruction do?

MOV Reg1, Reg2

Int. Secure Systems Lab
Technical University Vienna

26Internet Security 2

Intel x86 Assembler Primer

• Assembler Language
– human-readable form of machine instructions

– must understand the hardware architecture, memory model, and stack

• What does this Instruction do?

MOV Reg1, Reg2

• It depends: AT&T syntax vs. Intel syntax

Int. Secure Systems Lab
Technical University Vienna

27Internet Security 2

AT&T vs. Intel Syntax

AT&T Intel

mnemonic source(s), destination

MOV src, dest

Constants: prefixed with $

Hexadecimal numbers: start with 0x

Registers: prefixed with %

Memory access is of form
displacement(%base, %index, scale)
where the result address is
displacement + %base + %index*scale

mnemonic destination, source(s)

MOV dest, src

No prefix

hexadecimal numbers: start with 0x

Registers: No prefix

Memory access is of form
<size> [disp + index*4 + base]
where the result address is
disp + index*4 + base
Example:
dword [ebx + ecx*4 + mem_location]

Int. Secure Systems Lab
Technical University Vienna

28Internet Security 2

AT&T vs. Intel: Example

$ objdump -M att -d /bin/ls $ objdump -M intel -d /bin/ls

...
push %ebp
xor %ecx,%ecx
mov %esp,%ebp
sub $0x8,%esp
mov %ebx,(%esp)
mov 0x8(%ebp),%ebx
mov %esi,0x4(%esp)
mov 0xc(%ebp),%esi
mov (%ebx),%edx
mov 0x4(%ebx),%eax
xor 0x4(%esi),%eax
xor (%esi),%edx
or %edx,%eax
je 8049c60 <exit@plt+0x13c>
...

...
push ebp
xor ecx,ecx
mov ebp,esp
sub esp,0x8
mov DWORD PTR [esp],ebx
mov ebx,DWORD PTR [ebp+0x8]
mov DWORD PTR [esp+0x4],esi
mov esi,DWORD PTR [ebp+0xc]
mov edx,DWORD PTR [ebx]
mov eax,DWORD PTR [ebx+0x4]
xor eax,DWORD PTR [esi+0x4]
xor edx,DWORD PTR [esi]
or eax,edx
je 8049c60 <exit@plt+0x13c>
...

Int. Secure Systems Lab
Technical University Vienna

29Internet Security 2

Intel x86 Assembler Primer

• Identifying Syntax
– Intel: MOV dest, src

– AT&T: MOV src, dest

– Find out yourself:

• Look out for read-only elements, constants → match them as source

• IDA Pro, Windows usually use Intel Syntax

• objdump, Unix Systems prefer AT&T syntax
– Usually you will find a switch/argument to change the syntax)

mailto:exit@plt
mailto:exit@plt

Int. Secure Systems Lab
Technical University Vienna

30Internet Security 2

Registers

• Local variables of processor
– Efficient access

• No delays compared to loading from RAM/Memory

– Are accessed by name in assembly instructions

– Different categories
• General-purpose register (GPR)

• Special-purpose regsiters (SPR)

• Vector registers

• Data registers

• Instruction Pointer
– The EIP register contains the address of the next instruction to be

executed if no branching is done

Int. Secure Systems Lab
Technical University Vienna

31Internet Security 2

General-purpose registers

• Eight 32-bit general purpose registers (GPR)
• can be used for calculations, temporary storage of values, …
• %eax, %ebx, %ecx, %edx, %esi, %edi, %esp, %ebp

– %esp - stack pointer
– %ebp - frame/base pointer

• Registers Extensions
– “E” prefix for 32bit variants → EAX, EIP
– “R” prefix for 64 bit variants → RAX, RIP

• Additional GPRs for 64 bit: R8 → R15

Int. Secure Systems Lab
Technical University Vienna

32Internet Security 2

Status register (EFLAGS register)

• The EFLAGS is a 32-bit register used as a collection
of bits representing Boolean values to store the
results of operations and the state of the processor
– CF: Carry Flag Set if the last arithmetic operation carried

(addition) or borrowed (subtraction) a bit beyond the size of
the register

– PF: Parity Flag Set if the number of set bits in the least
significant byte is a multiple of 2

– ZF: Zero Flag Set if the result of an operation is Zero
– SF: Sign Flag Set if the result of an operation is negative
– … and many more

Int. Secure Systems Lab
Technical University Vienna

33Internet Security 2

Intel x86 Assembler Primer

• Stack
– managed by stack pointer (%esp) and frame pointer (%ebp)

– used for
• function arguments

• function return address

• local arguments

Int. Secure Systems Lab
Technical University Vienna

34Internet Security 2

Intel x86 Assembler Primer

• Endianness/ Byte ordering
– important for multi-byte values (e.g., four byte long value)

– Intel Architecture uses little endian ordering

– how to represent 0x11223344 in memory (at addr)?

0x010004 (addr) : 0x44
0x010005 (addr+1) : 0x33
0x010006 (addr+2) : 0x22
0x010007 (addr+3) : 0x11

Int. Secure Systems Lab
Technical University Vienna

35Internet Security 2

Intel x86 Assembler Primer

• Important mnemonics (instructions)
 mov data transfer
 push/pop top of stack manipulation
 add/sub arithmetic
 cmp/test compare two values and set control flags
 je/jne conditional jump depending on control flags (branch)
 jmp unconditional jump

• Numerical representation
– Binary (0,1): 10011100

• Prefix: 0b10011100 ← Unix (both Intel and AT&T)

• Suffix: 10011100b ← Traditional Intel syntax

– Hexadecimal (0...F): “0x” vs “h”

• Prefix: 0xABCD1234 ← Easy to notice

• Suffix: ABCD1234h ← Number or literal? (Usually Syntax highlighting will help
out)

Int. Secure Systems Lab
Technical University Vienna

36Internet Security 2

Intel x86 Assembler Primer

• Addressing modes
– Direct: MOV EAX, [10h]

• Copy value located at address 10h

– Indirect: MOV EAX, [EBX]
• Copy value pointed to by register BX

– Indexed: MOV AL, [EBX + ECX * 4 + 10h]
• Copy value from array (BX[4 * CX + 0x10])

– Pointers can be associated to type
• MOV AL, byte ptr [BX]

• For 64bit you can also read/use RIP for addressing
– Useful for Position-independent code (and shellcode)

Int. Secure Systems Lab
Technical University Vienna

37Internet Security 2

Intel x86 Assembler Primer

• if statement

#include <stdio.h>

int main(int argc, char **argv)

{

 int a;

 if(a < 0) {

 printf("A < 0\n");

 }

 else {

 printf("A >= 0\n");

 }

}

.LC0:

 .string "A < 0\n"

.LC1:

 .string "A >= 0\n"

.globl main

 .type main, @function

main:

 [function prologue]

 cmp $0, -4(%ebp) /* s = a - 0*/

 jns .L2 /* if sign bit is not

 set */

 mov $.LC0, (%esp)

 call printf

 jmp .L3

.L2:

 mov $.LC1, (%esp)

 call printf

.L3:

 leave

 ret

Int. Secure Systems Lab
Technical University Vienna

38Internet Security 2

Intel x86 Assembler Primer

• while statement

#include <stdio.h>

int main(int argc, char **argv)

{

 int i;

 i = 0;

 while(i < 10)

 {

 printf("%d\n", i);

 i++;

 }

}

.LC0:

 .string "%d\n"

main:

 [function prologue]

 mov $0, -4(%ebp)

.L2:

 cmp $9, -4(%ebp)

 jle .L4 /* Jump if less or equal */

 jmp .L3

.L4:

 mov -4(%ebp), %eax

 mov %eax, 4(%esp)

 mov $.LC0, (%esp)

 call printf

 lea -4(%ebp), %eax /* Load Address */

 inc (%eax)

 jmp .L2

.L3:

 leave

 ret

Int. Secure Systems Lab
Technical University Vienna

39Internet Security 2

Intel x86 Assembler Primer

• Calling Conventions
– Standard for passing arguments to function calls
– Caller and Callee need to agree
– Enforced by compiler
– Important for 3rd party library usage
– Different styles ↔ different Pros/cons

Int. Secure Systems Lab
Technical University Vienna

40Internet Security 2

Intel x86 Assembler Primer

• System V AMD64 ABI
– Used on *NIX systems
– Arguments (Integer/Pointer) passed in

• RDI, RSI, RDX, RCX, R8, R9

– System calls use R10 instead of RCX
– Floating Point arguments passed in XMM registers
– All Additional Arguments are passed on stack
– Microsoft x64 calling convention similar

• Uses: RCX, RDX, R8, R9

Int. Secure Systems Lab
Technical University Vienna

41Internet Security 2

Disassembly

Int. Secure Systems Lab
Technical University Vienna

42Internet Security 2

Disassembly

Int. Secure Systems Lab
Technical University Vienna

43Internet Security 2

CORRECT

Disassembly

• Linear sweep disassembler
– start at beginning of code (.text) section

– disassemble one instruction after the other

– assume that well-behaved compiler tightly packs instructions
– objdump -d uses this approach

• Obfuscation Attack
– insert data (or junk) between instructions and let control flow jump over this garbage

– disassembler gets confused

jmp L1
.short 0x4711
L1:
xor %eax, %eax
...

ret

4004cf: eb 02 jmp 4004d3
4004d1: 11 47 <junk>

4004d3: 31 c0 xor %eax,%eax
4004d5: b8 00 00 00 00 mov $0x0,%eax
4004da: c9 leave
4004db: c3 ret

Int. Secure Systems Lab
Technical University Vienna

44Internet Security 2

Disassembly

jmp L1
.short 0x4711
L1:
xor %eax, %eax
...

ret

4004cf: eb 02 jmp 4004d3
4004d1: 11 47 31 adc %eax,0x31(%edi)

4004d4: c0 b8 00 00 00 00 c9 sarb $0xc9,0x0(%eax)

4004db: c3 ret

• Linear sweep disassembler
– start at beginning of code (.text) section

– disassemble one instruction after the other

– assume that well-behaved compiler tightly packs instructions
– objdump -d uses this approach

• Obfuscation Attack
– insert data (or junk) between instructions and let control flow jump over this garbage

– disassembler gets confused

Int. Secure Systems Lab
Technical University Vienna

45Internet Security 2

Disassembly

• Recursive traversal disassembler
– aware of control flow

– start at program entry point (e.g., determined by ELF header)

– disassemble one instruction after the other, until branch or jump is found

– recursively follow both (or single) branch (or jump) targets

– not all code regions can be reached
• indirect calls and indirect jumps

• use a register to calculate target during run-time

– for these regions, linear sweep is used

– IDA Pro uses this approach

Int. Secure Systems Lab
Technical University Vienna

46Internet Security 2

Disassembly

• Recursive traversal disassembler

• Obfuscation Attack

– plain previous attack fails

– replace direct jumps (calls) by indirect ones

– force disassembler to revert to linear sweep, and then use previous attack

4004b7: e8 00 00 00 00 call 4004bc
4004bc: 58 pop %eax
4004bd: 83 c0 06 add $0x6,%eax
4004c0: ff e0 jmp *%eax

4004c2: 31 c0 xor %eax,%eax
 : ...

Int. Secure Systems Lab
Technical University Vienna

47Internet Security 2

Disassembly

• Recursive traversal disassembler

• Obfuscation Attack

– plain previous attack fails

– replace direct jumps (calls) by indirect ones

– force disassembler to revert to linear sweep, and then use previous attack

4004b7: e8 00 00 00 00 call 4004bc
4004bc: 58 pop %eax
4004bd: 83 c0 06 add $0x6,%eax
4004c0: ff e0 jmp *%eax

4004c2: 31 c0 xor %eax,%eax
 : ...

get eip

jmp to 4004c2

r
e
c
u
r
s
i
v
e

t
r
a
v
e
r
s
a
l

l
i
n
e
a
r

s
w
e
e
p

Int. Secure Systems Lab
Technical University Vienna

48Internet Security 2

Control Flow Graph

• Nodes are called basic blocks

• Edges represent possible flow of

control from end of block to beginning

of another block

• Control always enters at the beginning

of a block and exits at the end

Int. Secure Systems Lab
Technical University Vienna

49Internet Security 2

Bytecode Decompilation

• Bytecode Decompilation

– Recreate program for interpreted languages

• Usually includes more information

– Instructions are easier to reverse

– Additional information in archives

• Examples for decompilers (just a small sample selection to get you
started)

– Python .pyc → uncompyle2

– Java → Procyon/Luyten

– .NET → ILSpy

Int. Secure Systems Lab
Technical University Vienna

50Internet Security 2

Binary Decompilation

• Binary Decompilation

– Recreate high level representation of binary code

– Usually C or C-like

• Faces several Problems

– Optimizing compilers destroy structure
• e.g. in-lining, loop unrolling,...

– Type information is lost

– Reconstruction of control flow...

• Still verry usefull, even if it provides incomplete results

Int. Secure Systems Lab
Technical University Vienna

51Internet Security 2

Binary Decompilation

Int. Secure Systems Lab
Technical University Vienna

52Internet Security 2

Reverse Engineering

Dynamic Techniques

Int. Secure Systems Lab
Technical University Vienna

53Internet Security 2

Dynamic Techniques

• General information about process
– /proc file system

– /proc/<pid>/ for a process with pid <pid>

– interesting entries
• cmdline (show command line)
• environ (show environment)
• maps (show memory map, remember this for the challenges!!)

• fd (file descriptors held by program)

• exe (program image)

• Interaction with the environment
– file system
– network

Int. Secure Systems Lab
Technical University Vienna

54Internet Security 2

Dynamic Techniques

• File system interaction
– lsof

– lists all open files associated with processes

• Registry (Windows)
– regmon (Sysinternals)

• Network interaction
– check for open ports

• processes that listen for requests or that have active connections
• ss (netstat [deprecated])

• also shows UNIX domain sockets used for IPC

– check for actual network traffic
• tcpdump
• wireshark

Int. Secure Systems Lab
Technical University Vienna

55Internet Security 2

Dynamic Techniques

• System calls
– are at the boundary gates between user space and kernel

– reveal much about a process’ operation
– strace

– powerful tool that can also
• follow child processes

• decode more complex system call arguments

• show signals

– works via the ptrace interface

• Library functions
– similar to system calls, but dynamically linked libraries
– ltrace

Int. Secure Systems Lab
Technical University Vienna

56Internet Security 2

Dynamic Techniques

• strace

$ strace echo "hi"

execve("/bin/echo", ["echo", "hi"], [/* 41 vars */]) = 0
brk(0) = 0xddb000
mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVA...) = 0x7f54eac10000
...
access("/etc/ld.so.nohwcap", F_OK) = -1 ENOENT (No such file or...)
open("/lib/libc.so.6", O_RDONLY) = 3
read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\"..., 832) = 832
fstat(3, {st_mode=S_IFREG|0755, st_size=1490312, ...}) = 0
mmap(NULL, 3598344, PROT_READ|PROT_EXEC, ...) = 0x7f54ea684000
mprotect(0x7f54ea7ea000, 2093056, PROT_NONE) = 0
...
write(1, "hi\n", 3hi) = 3
close(1) = 0
munmap(0x7f54eaac1000, 4096) = 0
close(2) = 0
exit_group(0) = ?

Int. Secure Systems Lab
Technical University Vienna

57Internet Security 2

Dynamic Techniques

• ltrace

$ ltrace echo "hi"

__libc_start_main(0x4013e0, 2, 0x7fffb3cfbe78, ...)
getenv("POSIXLY_CORRECT") = NULL
strrchr("echo", '/') = NULL
setlocale(6, "") = "en_US.UTF-8"
bindtextdomain("coreutils", "/usr/share/locale") = "/usr/share/locale"
textdomain("coreutils") = "coreutils"
...
fputs_unlocked(0x7fffb3cfc61e, 0x7f19cdc6a780, 0, 1, 0) = 1
...
fclose(0x7f19cdc6a860) = 0
...
+++ exited (status 0) +++

Int. Secure Systems Lab
Technical University Vienna

58Internet Security 2

Dynamic Techniques

• Execute program in a controlled environment
– sandbox (virtual machine or emulator)

– debugger

• Advantages
– can inspect actual program behavior and data values

– target of indirect jumps (or calls) can be observed

• Disadvantages
– may accidentally launch attacks

– anti-debugging mechanisms

– not all possible traces (paths) can be seen

Int. Secure Systems Lab
Technical University Vienna

59Internet Security 2

Dynamic Techniques

• Debugger
– breakpoints to pause execution

• when execution reaches a certain point (address)
• when specified memory is access or modified

– examine memory and CPU registers
– modify memory and execution path

• Advanced features
– attach comments to code
– data structure and template naming
– track high level logic

• file descriptor tracking

– function fingerprinting

Int. Secure Systems Lab
Technical University Vienna

60Internet Security 2

Dynamic Techniques

• Debugger on x86 / Linux
– use the ptrace interface

• ptrace
– allows a process (parent) to monitor another process (child)
– whenever the child process receives a signal, the parent is notified
– parent can then

• access and modify memory image (peek and poke commands)
• access and modify registers
• deliver signals

– ptrace can also be used for system call monitoring

Int. Secure Systems Lab
Technical University Vienna

61Internet Security 2

Dynamic Techniques

• Breakpoints
– hardware breakpoints
– software breakpoints

• Hardware breakpoints
– special debug registers (e.g., Intel x86)
– debug registers compared with PC at every instruction

• Software breakpoints
– debugger inserts (overwrites) target address with an int 0x03 instruction
– interrupt causes signal SIGTRAP to be sent to process
– debugger

• gets control and restores original instruction
• single steps to next instruction
• re-inserts breakpoint

Int. Secure Systems Lab
Technical University Vienna

62Internet Security 2

Dynamic Techniques

• Anti-debugging techniques

– detect tracing
• a process can be traced only once

if (ptrace(PTRACE_TRACEME, 0, 1, 0) < 0)

 exit(1);

– detect breakpoints
• look for int 0x03 instructions

if ((*(unsigned *)((unsigned)<addr>+3) & 0xff)==0xcc)

 exit(1);

Int. Secure Systems Lab
Technical University Vienna

63Internet Security 2

Dynamic Techniques

• Anti-debugging techniques (cont.)

– checksum the code
if (checksum(text_segment) != valid_checksum)

 exit(1);

– register signal handler for debug interrupt

• force interrupt: parent will receive the signal

int dbg=1;

void my_handler(int signal) { dbg=0; };

int main(...) {

 signal(SIG_TRAP, my_handler);

 asm(“int 0x03”);

 if (dbg)

 exit(1);

Int. Secure Systems Lab
Technical University Vienna

64Internet Security 2

Dynamic Techniques

• Reverse Debugging
– Sometimes also called “Historical debugging” or “IntelliTrace”

(Microsoft)

• Step through your program backwards in “time”
– Usefull to identify the source of arguments/errors
– You can use watchpoint/breakpoints as usual

• Gdb supports this since 7.0
– Has to be activated explicitly in gdb
– Imposes high runtime and memory overhead

• Everything needs to be recorded
– Registers, Old memory values,...

Int. Secure Systems Lab
Technical University Vienna

65Internet Security 2

Malicious Code Analysis

Int. Secure Systems Lab
Technical University Vienna

66Internet Security 2

Malicious Code Analysis

Static analysis vs. dynamic analysis

• Static analysis
– code is not executed
– all possible branches can be examined (in theory)
– quite fast

• Problems of static analysis
– binary code typically contains very little information

• functions, variables, type information, …

– disassembly difficult (particularly for Intel x86 architecture)
– obfuscated code
– packed code, self-modifying code

Int. Secure Systems Lab
Technical University Vienna

67Internet Security 2

Malicious Code Analysis

• Packed code (dynamic unpacking)

0x00000000 – 0xbfffffff: user memory

0xc0000000 – 0xffffffff: kernel memory

heap

stack

.code

.bss 7a3e8018efa8aca8288
27281a82ef9a01ab181
1020a9a3bc9e99ff121 .code

08048300 <decrypt>:
 8048300: ...

080483f4 <main>:
 80483f4: h=malloc(...)
 80483f5: for (i=...)
 80483f6: x = packed_code[i];
 80483f7: h[i] = decrypt(x);
 80483f7: jmp *h

Int. Secure Systems Lab
Technical University Vienna

68Internet Security 2

Malicious Code Analysis

• Packed code (dynamic unpacking)

0x00000000 – 0xbfffffff: user memory

0xc0000000 – 0xffffffff: kernel memory

heap

stack

.code

.bss 7a3e8018efa8aca8288
27281a82ef9a01ab181
1020a9a3bc9e99ff121 .code

08048300 <decrypt>:
 8048300: ...

080483f4 <main>:
 80483f4: h=malloc(...)
 80483f5: for (i=...)
 80483f6: x = packed_code[i];
 80483f7: h[i] = decrypt(x);
 80483f7: jmp *h

Int. Secure Systems Lab
Technical University Vienna

69Internet Security 2

Malicious Code Analysis

• Packed code (dynamic unpacking)

0x00000000 – 0xbfffffff: user memory

0xc0000000 – 0xffffffff: kernel memory

heap

stack

.code

.bss 7a3e8018efa8aca8288
27281a82ef9a01ab181
1020a9a3bc9e99ff121 .code

08048300 <decrypt>:
 8048300: ...

080483f4 <main>:
 80483f4: h=malloc(...)
 80483f5: for (i=...)
 80483f6: x = packed_code[i];
 80483f7: h[i] = decrypt(x);
 80483f7: jmp *h

push %ebp
sub $0x14, %esp
xor %eax, %eax
...

Int. Secure Systems Lab
Technical University Vienna

70Internet Security 2

Malicious Code Analysis

• Packed code (dynamic unpacking)

0x00000000 – 0xbfffffff: user memory

0xc0000000 – 0xffffffff: kernel memory

heap

stack

.code

.bss 7a3e8018efa8aca8288
27281a82ef9a01ab181
1020a9a3bc9e99ff121 .code

08048300 <decrypt>:
 8048300: ...

080483f4 <main>:
 80483f4: h=malloc(...)
 80483f5: for (i=...)
 80483f6: x = packed_code[i];
 80483f7: h[i] = decrypt(x);
 80483f7: jmp *h

push %ebp
sub $0x14, %esp
xor %eax, %eax
...

Int. Secure Systems Lab
Technical University Vienna

71Internet Security 2

Malicious Code Analysis

• Dynamic analysis
– code is executed

– sees instructions that are actually executed

• Problems of dynamic analysis
– single path (execution trace) is examined

– analysis environment possibly not invisible

– analysis environment possibly not comprehensive

• Possible analysis environments
– instrument program

– instrument operating system

– instrument hardware

Int. Secure Systems Lab
Technical University Vienna

72Internet Security 2

Malicious Code Analysis

• Instrument program
– analysis operates in same address space as sample
– manual analysis with debugger

– Detours (Windows API hooking mechanism)

– binary under analysis is modified
• breakpoints are inserted
• functions are rewritten
• debug registers are used

– not invisible, malware can detect analysis
– can cause significant manual effort

Int. Secure Systems Lab
Technical University Vienna

73Internet Security 2

Malicious Code Analysis

• Instrument operating system
– analysis operates in OS where sample is run
– Windows system call hooks

– invisible to (user-mode) malware
– can cause problems when malware runs in OS kernel
– limited visibility of activity inside program

• cannot set function breakpoints

Int. Secure Systems Lab
Technical University Vienna

74Internet Security 2

Malicious Code Analysis

• Instrument hardware
– provide virtual hardware (processor) where sample can

execute (sometimes including OS)
– software emulation of executed instructions

– analysis observes activity “from the outside”

– completely transparent to sample (and guest OS)
– operating system environment needs to be provided

Int. Secure Systems Lab
Technical University Vienna

75Internet Security 2

Analysis Report

• File activity
– read, write, create, open, …

• Registry activity

• Service activity
– start or stop of Windows services (via Service Manager)

• Process activity
– start, terminate process, inter-process communication

• Network activity
– API calls and packet (network) logs

Int. Secure Systems Lab
Technical University Vienna

76Internet Security 2

Stealth

• Virtual machines
– allow to quickly restore analysis environment

– identical, clean environment for every analysis run

– introduces detectable artifacts

• Some detection mechanisms (we have seen)
– x86 virtualization problems

– speed of execution

– check system/installation specific settings

– computer name, drive label, external IP address, etc.

Int. Secure Systems Lab
Technical University Vienna

77Internet Security 2

Stealth

$./analyze.py --show-window ~/anti_anubis.exe

Int. Secure Systems Lab
Technical University Vienna

78Internet Security 2

Overcomming
Anti-*

Int. Secure Systems Lab
Technical University Vienna

79Internet Security 2

Anti Disassembly

• Running the binary should still work

• Try different disassembly methods / tools

• Help the disassembler to analyse the code
– NOP out junk data

• 0x90 → NOP
– Remove some instructions (beware to not break intended

functionality)
– Connect pieces with unconditional jumps

• If you can identify jump targets for indirect jumps
• EB xx → JMP +xx

Int. Secure Systems Lab
Technical University Vienna

80Internet Security 2

Patching

• Use a hex editor (hexedit)

• GDB

– gdb (start gdb without a command to debug)

(gdb) set write on
(gdb) exec-file <progname>

• File needs to be selected after write is set to on

(gdb) set *0x4025a6=0xcc
• radare2

– oo+ (re-open file in write mode)

w 0x90 (write 0x90 at current possition)

Int. Secure Systems Lab
Technical University Vienna

81Internet Security 2

Anti Debugging

• Reduce visibility of the debugger

• Use the appropriate breakpoint technique

• Intercept certain API functions to return fake results

– Or patch jumps inside the binary

– e.g JE (0x74) → JNE (0x75)

• Single step through problematic part manually and disable anti-
debugging checks
– Or script the process

– Some tools also have functionality to work around certain checks

Int. Secure Systems Lab
Technical University Vienna

82Internet Security 2

LD_PRELOAD

• Arguments for Dynamic Linker

– Preloads given library before all other libraries

– Can replace API calls

e.g ptrace

• Can also be usefull to introduce determinism
– e.g. replace calls to random or gettime with deterministic

values to get the same results while debugging/analysing a
binary

Int. Secure Systems Lab
Technical University Vienna

83Internet Security 2

Anti-VM

• Try to change the execution environment

– Run on a different VM

– Tweak environment to avoid detection

– Run on bare metal (beware!)

• Check what the binary reads/compares/executes to find anti-vm
tricks

• Change control flow with a debugger

• Patch the binary to remove/avoid the checks

Int. Secure Systems Lab
Technical University Vienna

90Internet Security 2

Summary

• Software reverse engineering
– static & dynamic techniques

• Static techniques
– check for strings, symbols, and library functions
– disassembler

• Dynamic techniques
– system/API call monitoring (ptrace/ltrace interface)
– monitor network and file system activity
– debugger

• Malicious code analysis

	Internet Security 2
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Static Techniques
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Dynamic Techniques
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Malicious Code Analysis
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Analysis Report
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Summary

